8,788 research outputs found

    Therapiemöglichkeiten bei SchwangerschaftstĂŒbelkeit

    Get PDF
    Bis zu 85 Prozent der schwangeren Frauen leiden an Übelkeit in der FrĂŒhschwangerschaft, und weitere 25 Prozent zusĂ€tzlich an Erbrechen. Isabelle Arnet und Kurt Hersberger, beide im Departement fĂŒr Pharmazeutik der UniversitĂ€t Basel tĂ€tig, und Ursula von Mandach, PrĂ€sidentin der Schweizerischen Arbeitsgemeinschaft fĂŒr Perinatale Pharmakologie (SAPP), prĂ€sentieren aktuelle medikamentöse Therapieoptionen und die Mittel der ersten Wahl in der Selbstmedikation

    Screening enhancement factors for laboratory CNO and rp astrophysical reactions

    Full text link
    Cross sections of laboratory CNO and rp astrophysical reactions are enhanced due to the presence of the multi-electron cloud that surrounds the target nuclei. As a result the relevant astrophysical factors are overestimated unless corrected appropriately. This study gives both an estimate of the error committed if screening effects are not taken into account and a rough profile of the laboratory energy thresholds at which the screening effect appears. The results indicate that, for most practical purposes, screening corrections to past relevant experiments can be disregarded. Regarding future experiments, however, screening corrections to the CNO reactions will certainly be of importance as they are closely related to the solar neutrino fluxes and the rp process. Moreover, according to the present results, screening effects will have to be taken into account particularly by the current and future LUNA experiments, where screened astrophysical factors will be enhanced to a significant degree.Comment: 6 RevTex pages + 2 ps figures. (Revised version). Accepted for publication in Journal of Physics

    Allogeneic bone marrow transplantation in second remission of childhood acute lymphoblastic leukemia: a population-based case control study from the Nordic countries

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldThis study compares allogeneic BMT with conventional chemotherapy for childhood ALL in second remission. Seventy-five children were transplanted between July 1981 and December 1995. For each patient two control patients matching the following criteria were selected from the Nordic database of ALL: (1) time of diagnosis, (2) T vs. non-T ALL, (3) site of relapse, (4) initial risk group, (5) sex and (6) relapse or =6 months after cessation of therapy. The minimal time of follow-up was 24 months. Mortality rate in CR2, leukemic relapse rate and the proportion in continued second remission were 16/75 (21%), 22/75 (29%) and 37/75 (50%), respectively. P2.-EFS for the BMT group was significantly better than that for the control group (0.40 vs. 0.23, P = 0.02). Children transplanted for bone marrow relapses in particular had a higher P2.-EFS (0.35 vs. 0.15 for the control group, P<0.01). Also, children grafted for early BM relapses had a higher P2.-EFS (0.32 vs. 0.11 for the control group P = 0.01). The outcome was similar when children were transplanted after early or late relapse. Also, there was no difference in outcome between the BMT and the chemotherapy group for children with late relapses. We conclude that allogeneic BMT with an HLA-identical sibling donor or other family donor should be performed in children relapsing in bone marrow during therapy or within 6 months of discontinuing therapy

    Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages

    Get PDF
    Piñeiro, S., GonzĂĄlez-Pola, C., FernĂĄndez-DĂ­az, J. M., Naveira-Garabato, A. C., SĂĄnchez-Leal, R., Puig, P., et al. (2021). Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages. Journal of Geophysical Research: Oceans, 126, e2020JC016535. https://doi.org/10.1029/2020JC016535. © 2020. American Geophysical Union. All Rights Reserved.© 2020. American Geophysical Union. All Rights Reserved. Major deep-convection activity in the northwestern Mediterranean during winter 2005 triggered the formation of a complex anomalous deep-water structure that substantially modified the properties of the Western Mediterranean deep layers. Since then, evolution of this thermohaline structure, the so-called Western Mediterranean Transition (WMT), has been traced through a regularly sampled hydrographic deep station located on the outer continental slope of Minorca Island. A rapid erosion of the WMT's near-bottom thermohaline signal was observed during 2005–2007. The plausible interpretation of this as local bottom-intensified mixing motivates this study. Here, the evolution of the WMT structure through 2005–2007 is reproduced by means of a one-dimensional diffusion model including double-diffusive mixing that allows vertical variation of the background mixing coefficient and includes a source term to represent the lateral advection of deep-water injections from the convection area. Using an optimization algorithm, a best guess for the depth-dependent background mixing coefficient is obtained for the study period. WMT evolution during its initial stages is satisfactorily reproduced using this simple conceptual model, indicating that strong depth-intensified mixing (K ∞ (z) ≈ 22 × 10−4 m2 s−1; z âȘ† 1,400 dbar) is a valid explanation for the observations. Extensive hydrographic and current observations gathered over the continental slope of Minorca during winter 2018, the first deep-convective winter intensively sampled in the region, provide evidence of topographically localized enhanced mixing concurrent with newly formed dense waters flowing along-slope toward the Algerian sub-basin. This transport-related boundary mixing mechanism is suggested to be a plausible source of the water-mass transformations observed during the initial stages of the WMT off Minorca.CTM2014-54374-R. BES-2015-074316.VersiĂłn del editor3,17

    Enzymatic synthesis of Tinuvin

    Get PDF
    Coupling of 3-(3-tert-butyl-4-hydroxyphenyl) propionic acid methylester to 1H-benzotriazole using a laccase from Trametes hirsuta was studied. The potentially resulting coupling product Tinuvin 1130 is an important UV-absorber used in polymer based materials. Oxidation of the phenol by the laccase led to homomolecular coupling reactions while the laccase did not attack 1H-benzotriazole. Due to the homomolecular reaction of the phenol in the presence of laccase coupling of phenol and 1H-benzotriazole was only observed when 1H-benzotriazole was applied in four-fold molar excess. The reaction was monitored by UV/vis spectroscopy, TLC and MS (ion trap) analysis. Coupling of 1H-benzotriazole took place in ortho position according to the postulated mechanism

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Epistemic policy networks in the European Union’s CBRN risk mitigation policy

    No full text
    This paper offers insights into an innovative and currently flagship approach of the European Union (EU) to the mitigation of chemical, biological, radiological, and nuclear (CBRN) risks. Building on its long-time experience in the CBRN field, the EU has incorporated methods familiar to the students of international security governance: it is establishing regional networks of experts and expertise. CBRN Centers of Excellence, as they are officially called, aim to contribute to the security and safety culture in different parts of Africa, the Middle East, South East Asia, and South East Europe, in the broadly construed CBRN area. These regional networks represent a modern form of security cooperation, which can be conceptualized as an epistemic policy networks approach. It offers flexibility to the participating states, which have different incentives to get involved. At the same, however, the paper identifies potential limitations and challenges of epistemic policy networks in this form

    Classical wave experiments on chaotic scattering

    Full text link
    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments.Comment: 33 pages, 13 figures; invited review for the Special Issue of J. Phys. A: Math. Gen. on "Trends in Quantum Chaotic Scattering
    • 

    corecore